
EXIP - Embeddable EXI Processor in C

EXIP USER GUIDE

February 26, 2013

Rumen Kyusakov
PhD student, Lule̊a University of Technology

Copyright (c) 2011-2013, Rumen Kyusakov. This work is licensed under Creative
Commons Attribution-ShareAlike 3.0 License.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

1 Introduction 1
1.1 Intended audience . 1
1.2 Organization . 1
1.3 Acknowledgment . 2

2 Basic Concepts 2
2.1 Project structure . 3
2.2 Strings in EXIP . 4
2.3 Error handling and memory management 4

3 Maturity Statement 5

4 Serialization 6
4.1 Schema-less encoding . 6
4.2 Schema-enabled encoding . 8

5 Parsing 9
5.1 Schema-less decoding . 9
5.2 Schema-enabled decoding . 11

6 EXI Options 12

7 Schema Information 13
7.1 Using exipg utility . 13
7.2 Converting XML Schema files to EXI . 13

1 Introduction

EXIP is a free, open-source, C language implementation of the Efficient XML In-
terchange (EXI) standard for representing XML documents. The EXI format keeps
the data in a binary form and is a compact and efficient way for storing, processing
and transmitting XML structured information. Each EXI document consists of two
parts: a header and a body. The header defines different encoding/decoding parameters
that affect the compactness, processing efficiency and memory usage when processing
the document (the EXI body part). For example, the document size can be further
reduced by using the EXI compression option indicating the application of DEFLATE
algorithm for data compression. Another important parameter is connected to the use
of XML schema information that sets constraints on the structure and content of the
document. The schema information must be available before the EXI encoding/decoding,
and it should be either statically set or communicated in advance using XML schema
languages such as W3C XML Schema. Schema-enabled EXI processing is much faster
and results in smaller EXI documents compared to schema-less processing. Furthermore,
there are a set of options, called fidelity options, determining the degree to which the
EXI encoding preserves all the information items found in the XML specification. More
information about EXI is given in the W3C specification [1] and primer [2]. There are
other specifications/formats for increasing the compactness and efficiency of XML such
as Fast Infoset, X.694 ASN.1 etc. Comparison with EXI and performance measurements
are available from the W3C EXI Working Group [3, 4].

1.1 Intended audience

This user guide is structured as a step-by-step tutorial on using the EXIP library. The
guide is written with the assumption that the reader has fairly good understanding of
the C programming language, XML and XML Schema technologies. While the goal
was to give short introductory notes on the EXI format, the reader is expected to be
familiar with the description of the EXI header options provided in the specification. The
intended audience of this guide are programmers working with XML/EXI technologies
for applications with high efficiency requirements such as networked embedded systems,
productivity tools and servers. Developers interested in contributing to the EXIP project
in terms of extra features, bug reports and patches are also encouraged to read it.

This guide does not assume the use of any concrete hardware/software platform. All
the examples and instructions should be valid for all execution environments.

1.2 Organization

The rest of this guide is organized in five sections. Section 2 Basic Concepts gives a
high level overview of some important concepts for working with EXIP. Section 3 Matu-
rity Statement describes the current status of the project. Sections 4 Serialization, 5
Parsing and 6 EXI Options present the EXIP API and describe the steps required for
using the library. The last part - 7 Schema Information is devoted to working with
XML Schema definitions used for schema-enabled EXI parsing and serialization.

1 exip v0.5

1.3 Acknowledgment

The author would like to thank the European Commission and the partners of the EU
FP7 project IMC-AESOP (www.imc-aesop.eu) for their support.

2 Basic Concepts

EXIP is a C library written in a portable manner that implements the EXI format for
XML representation. Probably a better way of describing what is EXIP is to say what it
is not. EXIP is not a tool for converting text XML documents to EXI and vice versa.
Why is that then? To start with, the XML to EXI conversion requires a XML parser
that process the XML input. The XML parser itself is at least as big chunk of code as
it is the EXI parser and having them both at the same time might not be possible or
desired on a resource constrained embedded system. Second, parsing the text XML and
then converting it to EXI effectively removes all the processing benefits of EXI. Having
said that, it does not mean that it is not possible to use EXIP in such scenario. For
example, it is planned as a future work to include a module in EXIP that performs
exactly that: generating corresponding EXI streams from a text XML input and vice
versa. It is therefore an optional behavior and not an only possible way of using the
library. It is not even difficult to implement such a module and the reader could do that
as a practical exercise after going through this guide.

As a result of this design choice, EXIP cannot use (at least for now) the XML Schema
format directly to perform schema-enabled processing. This might sound as a big flaw in
the implementation but is just the opposite. XML Schema documents are plain XML
documents and as such they have analogous EXI representation. Working with the EXI
representation of the XML Schema definitions brings all the performance benefits of the
EXI itself - faster processing and more compact representation. Now, using static systems
where the schema information is only processed at design time would not make much
difference. However, once you are faced with more dynamic systems that are capable of
handling schema information at run-time, the use of EXI representation is more beneficial
especially in networked embedded environments.

Yet another not - EXIP is not compliant with DOM, SAX or StAX Application
Programming Interfaces (APIs) for XML processing. The single reason for that is the
efficiency trade-off. All these APIs are using string representation of the primitive data
types defined by the XML Schema specification such as float, integer, date etc. This
means that when schema definitions are available these types must be converted from
native types to string and then back from string to native representation in order to fit
in the API. Once again this does not mean that you cannot use EXIP with applications
that require DOM, SAX or StAX interface. The EXIP API is low level and typed and
requires a wrapper module in order to provide the aforementioned interfaces, which again
is scheduled for future work.

Figure 2.1 depicts these design decisions and shows the different components of the
library. Key concept when creating the structure of the project was modularity - the
functionality is grouped and encapsulated in different components. This allows for
disabling features that are not needed directly at compile time. As an example, the
Schema Parser component that is responsible for generation the grammar structures
based on XML Schema definitions is only needed if the system is expected to dynamically

2 exip v0.5

http://www.imc-aesop.eu

XML Information Set

Plain XML

Binary EXI

EXIP

Common Utils

String
Tables

Stream
IO

Grammars

Content IO

Schema
Parser

<EXIP
API>

Figure 2.1: EXIP components

handle XML schemes and hence in all other cases can be removed from the build at
compile time.

For further information and details on the EXIP API and the rational behind it see
the paper that first presents EXIP [5] (please refer to this work when citing information
from this guide or other EXIP documentation).

2.1 Project structure

The EXIP library is an Eclipse C project (and MS Visual Studio 2010 solution)
structured in the following subdirectories:

• bin/ - this is the build output directory. It is automatically created/removed when
doing builds of the project. The library binaries are located directly into the bin/

folder while the examples and other utils are compiled in separate subfolders

• build/ - this folder contains the build scripts of the project. The current release
provides a MS VS 2010 build under build/vs2010/ and GCC toolchain builds
under build/gcc/. The build/gcc/ folder further contains platform-dependent
parameters and headers located in subfolders - build/gcc/contiki for the Contiki
sensor platform OS and build/gcc/pc for desktop PCs. The build is started from
build/gcc/ with the following make build targets available:

all compiles the EXIP library. The default target platform is PC. To change the
target platform to Contiki for example, add TARGET=contiki as an argument
of make

check invokes the Check unit tests

clean removes the bin/ folder

doc generates the project Doxygen documentation. The output directory is set to
doc/dev/doxygen/

examples compiles and builds the example executables

utils compiles and builds the utils executables

dynlib generates a dynamic library libexip.so in bin/lib

3 exip v0.5

• doc/ - the project documentation: doc/user/ contains the source of this user guide;
doc/dev/ is the development documentation; doc/www/ contains the information
available on the project web page

• examples/ - the root of the example applications shipped with EXIP

• include/ - this folder contains the public header files of the EXIP library. Together
with the exipConfig.h defined per target platform, these files define the public
interface of the library.

• src/ - here are all internal definitions and .c files divided into subfolders according
to the modules in which they belong

• tests/ - Check unit tests, integration and validation tests

• utils/ - supporting utilities and development tools

2.2 Strings in EXIP

All character strings in EXIP are length prefixed. This means that all the strings that
are passed to the EXI encoder and all the strings that are parsed from the decoder are in
this format. The motivation for that is the number of string comparisons that the EXI
processor must perform when going through an EXI stream. In many cases, when the
strings differ in length, this operation is very efficient when the length is saved together
with the characters data. EXIP provides an API for working with this type of strings
defined in stringManipulate.h. The implementation of the functions declared in this
header file defines what type of characters are supported in the string. For example,
ASCII stringManipulate.c implements the strings as ASCII character arrays.

One way of increasing the compactness defined in the EXI specification is through the
use of string tables. The string tables are partitioned dictionaries that store and index
the strings that occur in particular EXI document. In such way, when a string has been
used once in the document it is added to the string tables. Every other occurrence of the
same string in the document is represented by its index in the string tables.

Figure 2.2 shows how the string tables are implemented in EXIP. As a user of the
library you do not need to understand the actual implementation details. The only thing
that you need to be aware of is that the strings that are passed to your application by
the EXIP parser should not be modified as they are integral part of the string tables.
You can clone the strings and use that copy for string manipulations.

2.3 Error handling and memory management

When an invalid input is given to the EXIP parser or some other error conditions
occur, the EXIP library functions return a numeric error codes that are defined in
errorHandle.h. More fine-grained error messages can be acquired by turning on the
debugging routines. You have control over the level of verbosity (INFO, WARN-
ING or ERROR) and the source of debugging information. All these parameters
can be configured in the exipConfig.h header that is defined per target platform
in build/gcc/<target platform> or build/vs2010 for Windows. When turned on the
debugging information is by default printed on the standard output.

4 exip v0.5

URI String Table

String: URI

PrefixTable: pTable

LocalNamesTable:
lTable

Prefix
String Table

String: prefix

1

*

Local Names
 String Table

String: localName

ValueLocalCrossTable:
vCrossTable

1 *

Value Local Cross
String Table

uint32_t: valueID

1

* Global Value
String Table

String: value

Figure 2.2: String tables in EXIP

EXIP has an internal memory management infrastructure and you are not required to
know its details unless you are using the EXIP string type in your own applications. That
is because the string manipulation functions use AllocList to manage their allocations.
You can either define your own string manipulation functions or acquaint yourself with
the memory management routines defined in memManagement.h.

3 Maturity Statement

The latest release of the EXIP library is alpha version 0.5. As such, some features are
missing and others are not stable enough for real-world usage. Here is the status of the
EXIP functionality:

• Currently only ASCII strings are supported. It should be relatively easy to extend
this with Unicode strings by implementing a dozen of functions in the header file
stringManipulate.h

• Using default options in the EXI header and schema-less mode should work without
any issues

• Schema-enabled processing can cause problems with some XML schema constructs.
The reason is in the grammar generation utility that converts XML Schema def-
initions to EXIP grammars. It still does not cover all the features of the XML
Schema specification such as string pattern facets, unions and lists.

• The following EXI header options are not supported yet: pre-compression, com-
pression, preserving lexical values, random access (selfContained), datatype repre-
sentation map.

5 exip v0.5

4 Serialization

This section describes the process of serializing an EXI stream using the EXIP API.
The description is divided into two parts - schema-less and schema-enabled encoding. The
basic steps are essentially the same in both cases so the schema-enabled part shows only
some special use-cases and configurations that differ from the schema-less serialization.

As discussed in section 2, the EXIP API is especially useful for applications that are not
dependent on XML APIs and text XML inputs. Example use cases are embedded devices
working exclusively with EXI, XML binding tools that generate parsing/serialization
code from XML Schema definitions, productivity tools etc. If your application works
with text XML input that needs to be converted to EXI you need to create an external
module that is built on top of the EXIP serialization API.

The serialization API is defined in EXISerializer.h. You can work with the serial-
ization functions directly or use the serialize global variable to access these functions
as methods.

4.1 Schema-less encoding

The serialization of an EXI stream consists of 7 simple steps:

1. Declare a stream container that holds the serialized data and EXIP state:

EXIStream strm ;

2. Initialize the EXI header of the new stream container:

s e r i a l i z e . in i tHeader (&strm) ;

3. (Optional) Set any options in the EXI header, if different from the defaults:

strm . header . ha s opt i on s = TRUE; /∗ Set the op t ions presence b i t ∗/
strm . header . ha s cook i e = TRUE; /∗ Inc lude EXI cook ie in the header ∗/
SET STRICT(strm . header . opts . enumOpt) ; /∗ Ind i ca t e a STRICT mode encoding ∗/

(see Section 6 for more information on how to set up the EXI options)

4. Define a binary output buffer for storing the serialized EXI data. The buffer can
optionally include an external stream for sending the serialized output (flushing
the buffer when full). If an output stream is not defined the whole EXI document
must fit into the memory buffer. The following code declares and initializes an
output memory buffer:

BinaryBuf fer bu f f e r ;
char buf [OUTPUT BUFFER SIZE] ;

bu f f e r . buf = buf ;
bu f f e r . bufLen = OUTPUT BUFFER SIZE;
bu f f e r . bufContent = 0 ;

Beside these definitions, when a file is used to store the serialized data the following
steps are also required:

/∗ IN CASE OF FILE OUTPUT STREAM ∗/
/∗ Define a func t i on implementing the ac tua l wr i t i n g to a f i l e ∗/
s i z e t writeToFileOutputStream (void∗ buf , s i z e t wr i t eS i z e , void∗ stream)
{

FILE ∗ o u t f i l e = (FILE∗) stream ;

6 exip v0.5

return fw r i t e (buf , 1 , wr i t eS i z e , o u t f i l e) ;
}

FILE ∗ o u t f i l e ; /∗ Using a f i l e f o r s t o r i n g the s e r i a l i z e d data ∗/
o u t f i l e = fopen (des t inat ionEXIFi l e , ”wb”) ; /∗ open the f i l e b e f o r e use ∗/
bu f f e r . ioStrm . readWriteToStream = writeToFileOutputStream ;
bu f f e r . ioStrm . stream = o u t f i l e ; /∗ Sets the output stream to the f i l e ∗/

If no file or other output streams are being used (e.i. the whole EXI message is
stored in buffer.buf), the output function and the stream of the BinaryBuffer

must be initialized with NULL values:

/∗ IN CASE OF IN−MEMORY ONLY OUTPUT∗/
bu f f e r . ioStrm . readWriteToStream = NULL;
bu f f e r . ioStrm . stream = NULL;

The size of the OUTPUT BUFFER SIZE macro depends on the use case. When in
in-memory output mode or sufficient RAM on the platform the buffer size should
be kept high. Note that even if an output stream is used such as a file, a non-zero
length buffer for temporary storing parts of the EXI serialization is still needed.

5. Initialize the stream:

/∗∗
∗ @param [in , out] strm EXI stream conta iner
∗ @param [in , out] b u f f e r output BinaryBuffer f o r s t o r i n g the encodded EXI stream
∗ @param [in] NULL a compiled schema informat ion to be used f o r schema

enab led proces s ing ; NULL i f no schema i s a v a i l a b l e
∗ @param [in] SCHEMA ID ABSENT one o f SCHEMA ID ABSENT, SCHEMA ID SET,

SCHEMA ID NIL or SCHEMA ID EMPTY as de f ined in the s p e c i f i c a t i o n
∗ @param [in] NULL when in SCHEMA ID SET mode a v a l i d s t r i n g r epre s en t ing

the schemaID ; NULL otherwi se
∗/
s e r i a l i z e . in i tSt ream(&strm , bu f f e r , NULL, SCHEMA ID ABSENT, NULL) ;

6. Start building the stream step by step starting from the header. The body should
always start with startDocument() and ends with endDocument() with at least
one element declaration. In schema-less mode the only type of data allowed is
string so when encoding element or attribute values you should use stringData().
NOTE: different attributes within a single element should be encoded in a lexico-
graphical order during serialization!

/∗ S t a t i c S t r ing type d e f i n i t i o n s i f any ∗/
const St r ing NS TARGET STR = {”http ://www. l t u . se / ex ip ” , 22} ;
const St r ing NS EMPTY STR = {NULL, 0} ;
const St r ing ELEM ROOT STR = {” rootElement ” , 11} ;
const St r ing ATTR TEST STR = {” t e s tA t t r i bu t e ” , 13} ;

s e r i a l i z e . exiHeader(&strm) ; /∗ Always f i r s t ∗/
s e r i a l i z e . startDocument(&strm) ; /∗ Ind i ca t e s beg inning o f the EXI body ∗/

QName qname= {&uri , &ln , NULL} ; /∗ QName d e f i n i t i o n c o s i s t i n g o f
namespace , l o c a l name and p r e f i x i f any∗/

/∗ Encode an element with QName <h t t p ://www. l t u . se / ex ip : rootElement> ∗/
qname . u r i = &NS TARGET STR;
qname . localName = &ELEM ROOT STR;
s e r i a l i z e . s tartElement(&strm , qname) ;

/∗ Encode a t t r i b u t e with QName <t e s tA t t r i b u t e> and ind i c a t e i t s type ∗/
qname . u r i = &NS EMPTY STR;
qname . localName = &ATTR TEST STR;

7 exip v0.5

s e r i a l i z e . a t t r i b u t e (&strm , qname , VALUE TYPE STRING) ;

S t r ing ch ; /∗ EXIP s t r i n g repre s en t ing a s t r i n g va lue ∗/

/∗ Convert a s t a t i c ASCII s t r i n g constant to EXIP s t r i n g type ∗/
a s c i iToS t r i n g (” a t t r i b u t e va lue ” , &ch , &strm . memList , FALSE) ;

s e r i a l i z e . s t r ingData (&strm , ch) ; /∗ Encode the va lue o f the a t t r i b u t e ∗/

a s c i iToS t r i n g (” element value ” , &ch , &strm . memList , FALSE) ;

s e r i a l i z e . s t r ingData (&strm , ch) ; /∗ The va lue o f the <rootElement> ∗/

s e r i a l i z e . endElement(&strm) ; /∗ Close element <rootElement> ∗/

s e r i a l i z e . endDocument(&strm) ; /∗ Close the EXI body∗/

The above code produces an EXI stream that has the following XML representation:

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<xp : rootElement xmlns : xp=”http ://www. l t u . se / ex ip ”

t e s tA t t r i bu t e=” a t t r i bu t e va lue ”>
element value
</xp : rootElement>

7. Destroy the EXI stream container and free the memory allocated by it. If any other
streams are left open close them as well:

s e r i a l i z e . closeEXIStream(&strm) ;
f c l o s e (o u t f i l e) ; /∗ Close the f i l e (i f any) used to s t o r e the output data ∗/

4.2 Schema-enabled encoding

When in schema-enabled mode the basic serialization steps are essentially the same.
The difference is in the parameters passed to the serialize.initStream(). You need
to pass a valid EXIPSchema object and not NULL as in the schema-less case. This object
contains all the definitions and constrains from the XML schema and its creation is a topic
of section 7 Schema Information. During the encoding in Step 6 you must use the types
for the values as defined by the schema definitions. For example, serialize.intData()
for integer values of elements or attributes and serialize.booleanData() for boolean
values. There are also few options in the EXI header that influence how the schema
information is utilized when encoding the EXI body:

strict this is a boolean option that specify if deviations from the schema definitions
are allowed (has value of false) or are not allowed (has value of true) in the
EXI body. The default value of this option is false. When in STRICT mode the
representation is slightly more compact. You can set the value of this option in
Step 3 with the following macro:

SET STRICT(strm . header . opts . enumOpt) ; /∗ Ind i ca t e a STRICT mode encoding ∗/

schemaId this option takes a string for its value. There are four possible states for this
option as defined in the specification:

• SCHEMA ID ABSENT - default state; no statement is made about the schema
information. If it is a schema-less or schema-enabled mode and what schema
definitions to be used when decoding must be communicated out of band.

8 exip v0.5

http://www.w3.org/TR/2011/REC-exi-20110310/#key-schemaIdOption

• SCHEMA ID SET - a string identification of the schema used for encoding
is specified in the EXI header. The format of this schema identifier is not
standardized and is left for the application to decide what to use. One
possibility is to use the target namespace of the schema or the URL address
of the schema location.

• SCHEMA ID NIL - no schema information is used for processing the EXI
body (i.e. a schema-less EXI stream).

• SCHEMA ID EMPTY - no user defined schema information is used for pro-
cessing the EXI body; however, the built-in XML schema types are available
for use in the EXI body through the xsi:type attribute.

All of these states can be set during initialization - Step 5:

St r ing schemaID ;
a s c i iToS t r i n g (”http ://www. l t u . se /schema” , &schemaID , &strm . memList , FALSE) ;
s e r i a l i z e . in i tSt ream(&strm , bu f f e r , OUTPUT BUFFER SIZE, &out , NULL,

SCHEMA ID SET, schemaID) ;

In this example we defined the state to SCHEMA ID SET and set an identifier for
the schema used - http://www.ltu.se/schema.

The serialization interface defined in EXISerializer.h has a more efficient low level
API for encoding the document structure when in schema-enabled mode. This API can
be accessed through serializeEvent() function. A description on how it can be used
might be included in the future versions of this guide. If you want to know more about
it you can check how it is used to encode the EXI options document in the header of an
EXI stream in headerEncode.c.

5 Parsing

The parsing interface of EXIP is similar to SAX and StAX. The main difference is that
most of the XML schema build-in types are passed in a native binary form rather than
as a string representation. The EXIP parser processes the EXI stream in one direction
and produces events on occurrence of information items such as elements, attributes
or content values. The applications using EXIP must register callback functions for
the events that they are interested in. In this way the data from the EXI stream is
delivered to the application as a parameters to these callback functions. The header
contentHandler.h provides declarations of the callback functions while the API for
controlling the progress through the EXI stream is in EXIParser.h.

5.1 Schema-less decoding

When in schema-less mode all value items are encoded with strings and hence deliv-
ered to the application through the stringData() callback handler. Similarly to the
serialization, the parsing consists of 7 simple steps:

1. Declare a parser container that holds the serialized data and EXIP state:

Parser par s e r ;

9 exip v0.5

2. Define a binary input buffer for reading the EXI stream. The buffer can optionally
include an external input stream for fetching the serialized EXI data. If an input
stream is not defined the whole EXI document must be stored in memory before
starting the parsing process. The following code declares and initializes an input
memory buffer:

BinaryBuf fer bu f f e r ;
char buf [INPUT BUFFER SIZE] ;

bu f f e r . buf = buf ;
bu f f e r . bufLen = INPUT BUFFER SIZE ;
bu f f e r . bufContent = 0 ;

Beside these definitions, when a file is used to fetch the EXI data the following
steps are also required:

/∗ IN CASE OF FILE INPUT STREAM ∗/
/∗ Define a func t i on implementing the ac tua l reading from a f i l e ∗/
s i z e t readFromFileInputStream (void∗ buf , s i z e t readSize , void∗ stream)
{

FILE ∗ i n f i l e = (FILE∗) stream ;
return f r e ad (buf , 1 , readSize , i n f i l e) ;

}

FILE ∗ i n f i l e ; /∗ Using a f i l e f o r f e t c h i n g the EXI data ∗/
i n f i l e = fopen (sourceEXIFi le , ” rb”) ; /∗ open the f i l e b e f o r e use ∗/
bu f f e r . ioStrm . readWriteToStream = readFromFileInputStream ;
bu f f e r . ioStrm . stream = i n f i l e ; /∗ Sets the input stream to the f i l e ∗/

If no file or other input streams are being used (e.i. the whole EXI message is
stored in buffer.buf), the input function and the stream of the BinaryBuffer

must be initialized with NULL values:

/∗ IN CASE OF IN−MEMORY ONLY INPUT∗/
bu f f e r . ioStrm . readWriteToStream = NULL;
bu f f e r . ioStrm . stream = NULL;

The size of the INPUT BUFFER SIZE macro depends on the use case. When in
in-memory input mode or sufficient RAM on the platform the buffer size should
be kept high. Note that even if an input stream is used such as a file, a non-zero
length buffer for temporary storing parts of the EXI data is still needed.

3. Define application data and initialize the parser object:

/∗∗ The app l i c a t i on data t ha t i s passed to the c a l l b a c k hand lers ∗/
struct app l i cat ionData
{

unsigned int elementCount ;
unsigned int ne s t i ngLeve l ;

} appData ;

/∗∗
∗ @param [in , out] parser EXIP parser conta iner
∗ @param [in] b u f f e r b inary b u f f e r f o r f e t c h i n g EXI encoded data
∗ @param [in] NULL a compiled schema informat ion to be used f o r schema

enab led proces s ing ; NULL i f no schema i s a v a i l a b l e
∗ @param [in , out] appData app l i c a t i on data to be passed to the c a l l b a c k hand lers
∗/

i n i tP a r s e r (&parser , bu f f e r , NULL, &appData) ;

4. Initialize the application data and register the callback handlers with the parser
object:

10 exip v0.5

appData . elementCount = 0 ; /∗ Example : the number o f e lements passed ∗/
appData . ne s t i ngLeve l = 0 ; /∗ Example : the nes t ing l e v e l ∗/

par s e r . handler . f a t a lE r r o r = samp l e f a t a lE r r o r ;
pa r s e r . handler . e r r o r = samp l e f a t a lE r r o r ;
pa r s e r . handler . startDocument = sample startDocument ;
pa r s e r . handler . endDocument = sample endDocument ;
pa r s e r . handler . s tartElement = sample startElement ;
pa r s e r . handler . a t t r i b u t e = samp l e a t t r i bu t e ;
pa r s e r . handler . s t r ingData = sample st r ingData ;
pa r s e r . handler . endElement = sample endElement ;

/∗∗ According to the above d e f i n i t i o n s :
∗ When the parser s t a r t pars ing the body , the sample startDocument ()
∗ c a l l b a c k w i l l be invoked ; when a s t a r t o f an element i s parsed the
∗ sample s tar tE lement () w i l l be invoked and so on . A l l o f the event s
∗ f o r which there i s no handler r e g i s t e r e d w i l l be d i scarded .
∗/

NOTE: If the EXI options are communicated with an out-of-band mechanism and
are not included in the EXI header of the stream they must be set here (see Section
6 for more information on how to set up the EXI options).

5. Parse the header of the stream:

parseHeader(&par s e r) ;
/∗ The header f i e l d s are s to red in parser . strm . header ∗/

6. Parse the body of the EXI stream, one content item at a time:

errorCode e r r o r c ode = ERR OK;
while (e r r o r c ode == ERR OK)
{

e r r o r c ode = parseNext(&par s e r) ;
}

/∗∗
∗ On su c c e s s f u l pars ing step , the parseNext () re turns ERR OK i f the re
∗ are more content i tems l e f t f o r pars ing and PARSING COMPLETE in case
∗ the pars ing i s complete . I f error cond i t i ons occur during the
∗ process i t re turns an error code .
∗/

7. Destroy the parser object and free the memory allocated by it. If any other streams
are left open close them as well:

des t royParse r (&par s e r) ;
f c l o s e (i n f i l e) ;

5.2 Schema-enabled decoding

When in schema-enabled mode the basic parsing steps are essentially the same. The
difference is in the EXIPSchema* parameter passed to the initParser(). You need to
pass a valid EXIPSchema object and not NULL as in the schema-less case. This object
contains all the definitions and constrains from the XML schema and its creation is a
topic of section 7 Schema Information. During parsing, the value types as defined by
the schema definitions are delivered through the corresponding callback handlers and
not only stringData(). For example, xsd:integer is delivered through intData() and
xsd:boolean through booleanData(). Apart from that all other decoding steps are the
same as in schema-less mode.

11 exip v0.5

6 EXI Options

The EXI specification defines a set of options that can be used to alter the way the
EXI body is processed. The precise values of the EXI options must be known by the EXI
processors to correctly interpret the EXI streams. One way to communicate the options
used for processing is to include them in the EXI Header (Recommended). However, the
presence of the EXI Options in its entirety in the EXI header is optional according to
the EXI specification. This means that if the options are not included in the EXI header
they must be communicated with an out-of-band mechanism.

During encoding, the options are included in the EXI Header if the has options flag
is set to TRUE:

strm . header . ha s opt i on s = TRUE;

If the flag is not set to TRUE, the specified options are used for encoding and must
be known (communicated out-of-band) by the decoder as they are not included in the
header.

During decoding, if the options are not present in the EXI Header they must be known
and set before the parsing of the header with parseHeader(). If out-of-band options
are set for decoding and there are options specified in the EXI stream - the out-of-band
options will be ignored. If there is no value specified for a particular option in the EXI
Header or by out-of-band mechanism then the default value for that option is assumed
according to the EXI specifications.

Table 6.1 shows how to set the Header fields and each of the EXI options before
processing EXI stream with EXIP.

EXI Option / Header field Instructions

EXI Cookie strm.header.has cookie = TRUE; (Default is FALSE)
Options Presence Bit strm.header.has options = TRUE; (Default is FALSE)
EXI Version strm.header.version number = 2; (Default is 1)

alignment SET ALIGNMENT(strm.header.opts.enumOpt, V); (Where V in
{BIT PACKED, BYTE ALIGNMENT, PRE COMPRESSION})

compression SET COMPRESSION(strm.header.opts.enumOpt);

strict SET STRICT(strm.header.opts.enumOpt);

fragment SET FRAGMENT(strm.header.opts.enumOpt);

preserve SET PRESERVED(strm.header.opts.preserve, V); (Where
V in {PRESERVE COMMENTS, PRESERVE PIS, PRESERVE DTD,

PRESERVE PREFIXES, PRESERVE LEXVALUES})
selfContained SET SELF CONTAINED(strm.header.opts.enumOpt);

schemaId const String SCHEMA ID STR = {"http://www.ltu.se/exip",
22}; strm.header.opts.schemaID = SCHEMA ID STR;

datatypeRepresentationMap Not implemented yet!
blockSize strm.header.opts.blockSize = 1000;

valueMaxLength strm.header.opts.valueMaxLength = 100;

valuePartitionCapacity strm.header.opts.valuePartitionCapacity = 100;

[user defined meta-data] Not implemented yet!

Table 6.1: Instructions on how to set each EXI options before processing

12 exip v0.5

7 Schema Information

This section examines different ways of constructing EXIPSchema object containing the
XML schema definitions and constrains. The header file grammarGenerator.h defines a
function generateSchemaInformedGrammars() that takes a XML schema document(s)
and converts them to EXIPSchema object. This function can be used to dynamically (at
run-time) parse a schema and generate the EXI grammar constructs for schema-enabled
parsing and serialization. The EXIPSchema object can be used to process multiple EXI
streams. After the processing is done, the schema object can be destroyed to free the
allocated memory with the destroySchema() function.

As mentioned earlier, the EXIP library currently supports only XML schema definitions
represented in EXI format. Moreover, the fidelity option Preserve.prefixes must be
set in order to decode the QNames in the value items correctly (see the EXI specification
for more information on that).

When the XML schemes are static (only used at compile time) the grammarGen module
is not needed and can be excluded from the build. In this case the EXIPSchema object
can be build from automatically generated source code by the exipg utility implemented
in utils/schemaHandling/createGrammars.c.

7.1 Using exipg utility

The exipg utility is a command line tool for generating EXI grammar definitions for
schema-enabled EXI processing based on XML schemes. It uses the grammar generation
function in grammarGenerator.h and as such also requires EXI encoded XML schemes.
There are three modes defining the output of the tool:

exip In this mode the XML schema is serialized into an EXIP specific format. The
output is an EXI document that later can be loaded into the EXIP library for
schema-enabled processing. This option is currently not implemented.

text In this mode the grammar definitions are printed in human readable form. This
mode is useful for debugging purposes.

static In this mode the grammar definitions are generated in static C source code.

As an example, the command line arguments used to generate the EXI Options document
grammars are:

ex ipg −stat ic −pfx=ops −ops=0001000 −schema=EXIOptions−xsd . ex i stat icEXIOpt ions . c

Note that the -ops= argument is required when the EXI options used during encoding
of the XSD into EXI are not included in the EXI header i.e. they are communicated
out-of-band.

7.2 Converting XML Schema files to EXI

Currently, there are no XML Schema editing tools that are capable of saving the
document in EXI format. For that reason it is required that you convert the text XML
Schema to EXI encoding before using it with EXIP. You can use any of the open source
Java implementations of EXI for that purpose. The latest distribution of the exip library
includes a convenient GUI tool from OpenEXI project that can be used to encode XSD

13 exip v0.5

schema files into EXI representation. The tool is located under externalTools/ folder
of the source tree. OpenEXI graphical tool can be started with the following command:

java − j a r OpenEXIGUI . j a r

When encoding the XML Schema file you should use schema-less mode indicated by
“Use Schema: None” and also set the Preserve.prefixes option by checking the “Preserve
Namespace Declarations” checkbox. It is recommended to encode these options in
the header by setting “Include options” checkbox. If you leave the “Include options”
unchecked, you need to use the -ops= argument of the exipg utility to specify the
out-of-band options.

References

[1] Efficient XML Interchange (EXI) Format 1.0, W3C Std., March 2011. [Online].
Available: http://www.w3.org/TR/2011/REC-exi-20110310/

[2] D. Peintner and S. Pericas-Geertsen, “Efficient XML Interchange (EXI) Primer,”
W3C, Tech. Rep., 2009. [Online]. Available: http://www.w3.org/TR/2009/
WD-exi-primer-20091208/

[3] C. Bournez, “Efficient XML Interchange Evaluation,” W3C, Tech. Rep., 2009.
[Online]. Available: http://www.w3.org/TR/exi-evaluation/

[4] G. White, J. Kangasharju, D. Brutzman, and S. Williams, “Efficient XML
Interchange Measurements Note,” W3C, Tech. Rep., 2007. [Online]. Available:
http://www.w3.org/TR/exi-measurements/

[5] R. Kyusakov, J. Eliasson, and J. Delsing, “Efficient Structured Data Processing for
Web Service Enabled Shop Floor Devices,” in 20th IEEE International Symposium
on Industrial Electronics, 2011.

14 exip v0.5

http://www.w3.org/TR/2011/REC-exi-20110310/
http://www.w3.org/TR/2009/WD-exi-primer-20091208/
http://www.w3.org/TR/2009/WD-exi-primer-20091208/
http://www.w3.org/TR/exi-evaluation/
http://www.w3.org/TR/exi-measurements/

	Introduction
	Intended audience
	Organization
	Acknowledgment

	Basic Concepts
	Project structure
	Strings in EXIP
	Error handling and memory management

	Maturity Statement
	Serialization
	Schema-less encoding
	Schema-enabled encoding

	Parsing
	Schema-less decoding
	Schema-enabled decoding

	EXI Options
	Schema Information
	Using exipg utility
	Converting XML Schema files to EXI

